Soft BIBD and Product Gradient Codes
Gradient coding is a coding theoretic framework to provide robustness against slow or unresponsive machines, known as stragglers, in distributed machine learning applications. Recently, Kadhe et al. (2019) proposed a gradient code based on a combinatorial design, called balanced incomplete block design (BIBD), which is shown to outperform many existing gradient codes in worst-case adversarial straggling scenarios. However, parameters for which such BIBD constructions exist are very limited (Colbourn and Dinitz, 2006).