Active Learning for Classification With Abstention
We construct and analyze active learning algorithms for the problem of binary classification with abstention, in which the learner has an additional option to withhold its decision on certain points in the input space. We consider this problem in the fixed-cost setting, where the learner incurs a cost $\lambda \in (0, 1/2)$ every time the abstain option is invoked. Our proposed algorithm can work with the three most commonly used active learning query models, namely, membership-query, pool-based, and stream-based models.